ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.15365
16
2

A convergence result of a continuous model of deep learning via Łojasiewicz--Simon inequality

26 November 2023
Noboru Isobe
ArXivPDFHTML
Abstract

This study focuses on a Wasserstein-type gradient flow, which represents an optimization process of a continuous model of a Deep Neural Network (DNN). First, we establish the existence of a minimizer for an average loss of the model under L2L^2L2-regularization. Subsequently, we show the existence of a curve of maximal slope of the loss. Our main result is the convergence of flow to a critical point of the loss as time goes to infinity. An essential aspect of proving this result involves the establishment of the \L{}ojasiewicz--Simon gradient inequality for the loss. We derive this inequality by assuming the analyticity of NNs and loss functions. Our proofs offer a new approach for analyzing the asymptotic behavior of Wasserstein-type gradient flows for nonconvex functionals.

View on arXiv
Comments on this paper