ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.14964
16
4

Selective Inference for Changepoint detection by Recurrent Neural Network

25 November 2023
Tomohiro Shiraishi
Daiki Miwa
Vo Nguyen Le Duy
Ichiro Takeuchi
ArXivPDFHTML
Abstract

In this study, we investigate the quantification of the statistical reliability of detected change points (CPs) in time series using a Recurrent Neural Network (RNN). Thanks to its flexibility, RNN holds the potential to effectively identify CPs in time series characterized by complex dynamics. However, there is an increased risk of erroneously detecting random noise fluctuations as CPs. The primary goal of this study is to rigorously control the risk of false detections by providing theoretically valid p-values to the CPs detected by RNN. To achieve this, we introduce a novel method based on the framework of Selective Inference (SI). SI enables valid inferences by conditioning on the event of hypothesis selection, thus mitigating selection bias. In this study, we apply SI framework to RNN-based CP detection, where characterizing the complex process of RNN selecting CPs is our main technical challenge. We demonstrate the validity and effectiveness of the proposed method through artificial and real data experiments.

View on arXiv
Comments on this paper