ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.13274
26
7

Enhancing Summarization Performance through Transformer-Based Prompt Engineering in Automated Medical Reporting

22 November 2023
Daphne van Zandvoort
Laura Wiersema
Tom Huibers
S. Dulmen
S. Brinkkemper
    LM&MA
    MedIm
ArXivPDFHTML
Abstract

Customized medical prompts enable Large Language Models (LLM) to effectively address medical dialogue summarization. The process of medical reporting is often time-consuming for healthcare professionals. Implementing medical dialogue summarization techniques presents a viable solution to alleviate this time constraint by generating automated medical reports. The effectiveness of LLMs in this process is significantly influenced by the formulation of the prompt, which plays a crucial role in determining the quality and relevance of the generated reports. In this research, we used a combination of two distinct prompting strategies, known as shot prompting and pattern prompting to enhance the performance of automated medical reporting. The evaluation of the automated medical reports is carried out using the ROUGE score and a human evaluation with the help of an expert panel. The two-shot prompting approach in combination with scope and domain context outperforms other methods and achieves the highest score when compared to the human reference set by a general practitioner. However, the automated reports are approximately twice as long as the human references, due to the addition of both redundant and relevant statements that are added to the report.

View on arXiv
Comments on this paper