ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.13165
22
168

Multimodal Large Language Models: A Survey

22 November 2023
Jiayang Wu
Wensheng Gan
Zefeng Chen
Shicheng Wan
Philip S. Yu
ArXivPDFHTML
Abstract

The exploration of multimodal language models integrates multiple data types, such as images, text, language, audio, and other heterogeneity. While the latest large language models excel in text-based tasks, they often struggle to understand and process other data types. Multimodal models address this limitation by combining various modalities, enabling a more comprehensive understanding of diverse data. This paper begins by defining the concept of multimodal and examining the historical development of multimodal algorithms. Furthermore, we introduce a range of multimodal products, focusing on the efforts of major technology companies. A practical guide is provided, offering insights into the technical aspects of multimodal models. Moreover, we present a compilation of the latest algorithms and commonly used datasets, providing researchers with valuable resources for experimentation and evaluation. Lastly, we explore the applications of multimodal models and discuss the challenges associated with their development. By addressing these aspects, this paper aims to facilitate a deeper understanding of multimodal models and their potential in various domains.

View on arXiv
Comments on this paper