ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.11342
90
4
v1v2v3v4 (latest)

On the Communication Complexity of Decentralized Bilevel Optimization

19 November 2023
Yihan Zhang
My T. Thai
Jie Wu
Hongchang Gao
ArXiv (abs)PDFHTML
Abstract

Decentralized bilevel optimization has been actively studied in the past few years since it has widespread applications in machine learning. However, existing algorithms suffer from large communication complexity caused by the estimation of stochastic hypergradient, limiting their application to real-world tasks. To address this issue, we develop a novel decentralized stochastic bilevel gradient descent algorithm under the heterogeneous setting, which enjoys a small communication cost in each round and small communication rounds. As such, it can achieve a much better communication complexity than existing algorithms. Moreover, we extend our algorithm to the more challenging decentralized multi-level optimization. To the best of our knowledge, this is the first time achieving these theoretical results under the heterogeneous setting. At last, the experimental results confirm the efficacy of our algorithm.

View on arXiv
Comments on this paper