ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.11060
21
0

AIMS-EREA -- A framework for AI-accelerated Innovation of Materials for Sustainability -- for Environmental Remediation and Energy Applications

18 November 2023
Sudarson Roy Pratihar
Deepesh Pai
Manaswita Nag
    AI4CE
ArXivPDFHTML
Abstract

Many environmental remediation and energy applications (conversion and storage) for sustainability need design and development of green novel materials. Discovery processes of such novel materials are time taking and cumbersome due to large number of possible combinations and permutations of materials structures. Often theoretical studies based on Density Functional Theory (DFT) and other theories, coupled with Simulations are conducted to narrow down sample space of candidate materials, before conducting laboratory-based synthesis and analytical process. With the emergence of artificial intelligence (AI), AI techniques are being tried in this process too to ease out simulation time and cost. However tremendous values of previously published research from various parts of the world are still left as labor-intensive manual effort and discretion of individual researcher and prone to human omissions. AIMS-EREA is our novel framework to blend best of breed of Material Science theory with power of Generative AI to give best impact and smooth and quickest discovery of material for sustainability. This also helps to eliminate the possibility of production of hazardous residues and bye-products of the reactions. AIMS-EREA uses all available resources -- Predictive and Analytical AI on large collection of chemical databases along with automated intelligent assimilation of deep materials knowledge from previously published research works through Generative AI. We demonstrate use of our own novel framework with an example, how this framework can be successfully applied to achieve desired success in development of thermoelectric material for waste heat conversion.

View on arXiv
Comments on this paper