ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.09832
66
8
v1v2v3 (latest)

WatME: Towards Lossless Watermarking Through Lexical Redundancy

16 November 2023
Liang Chen
Yatao Bian
Yang Deng
Deng Cai
Shuaiyi Li
Peilin Zhao
Kam-Fai Wong
    WaLM
ArXiv (abs)PDFHTML
Abstract

Text watermarking has emerged as an important technique for detecting machine-generated text. However, existing methods generally use arbitrary vocabulary partitioning during decoding, which results in the absence of appropriate words during the response generation and disrupts the language model's expressiveness, thus severely degrading the quality of text response. To address these issues, we introduce a novel approach, Watermarking with Mutual Exclusion (WatME). Specifically, by leveraging linguistic prior knowledge of inherent lexical redundancy, WatME can dynamically optimize the use of available vocabulary during the decoding process of language models. It employs a mutually exclusive rule to manage this redundancy, avoiding situations where appropriate words are unavailable and maintaining the expressive power of large language models (LLMs). We present theoretical analysis and empirical evidence demonstrating that WatME substantially preserves the text generation ability of LLMs while maintaining watermark detectability. Specifically, we investigate watermarking's impact on the emergent abilities of LLMs, including knowledge recall and logical reasoning. Our comprehensive experiments confirm that WatME consistently outperforms existing methods in retaining these crucial capabilities of LLMs. Our code will be released to facilitate future research.

View on arXiv
Comments on this paper