ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.09274
41
0

Constructing interpretable principal curve using Neural ODEs

15 November 2023
Guangzheng Zhang
Bingxian Xu
ArXiv (abs)PDFHTML
Abstract

The study of high dimensional data sets often rely on their low dimensional projections that preserve the local geometry of the original space. While numerous methods have been developed to summarize this space as variations of tree-like structures, they are usually non-parametric and "static" in nature. As data may come from systems that are dynamical such as a differentiating cell, a static, non-parametric characterization of the space may not be the most appropriate. Here, we developed a framework, the principal flow, that is capable of characterizing the space in a dynamical manner. The principal flow, defined using neural ODEs, directs motion of a particle through the space, where the trajectory of the particle resembles the principal curve of the dataset. We illustrate that our framework can be used to characterize shapes of various complexities, and is flexible to incorporate summaries of relaxation dynamics.

View on arXiv
Comments on this paper