20
1

Cross-dataset domain adaptation for the classification COVID-19 using chest computed tomography images

Abstract

Detecting COVID-19 patients using Computed Tomography (CT) images of the lungs is an active area of research. Datasets of CT images from COVID-19 patients are becoming available. Deep learning (DL) solutions and in particular Convolutional Neural Networks (CNN) have achieved impressive results for the classification of COVID-19 CT images, but only when the training and testing take place within the same dataset. Work on the cross-dataset problem is still limited and the achieved results are low. Our work tackles the cross-dataset problem through a Domain Adaptation (DA) technique with deep learning. Our proposed solution, COVID19-DANet, is based on pre-trained CNN backbone for feature extraction. For this task, we select the pre-trained Efficientnet-B3 CNN because it has achieved impressive classification accuracy in previous work. The backbone CNN is followed by a prototypical layer which is a concept borrowed from prototypical networks in few-shot learning (FSL). It computes a cosine distance between given samples and the class prototypes and then converts them to class probabilities using the Softmax function. To train the COVID19-DANet model, we propose a combined loss function that is composed of the standard cross-entropy loss for class discrimination and another entropy loss computed over the unlabelled target set only. This so-called unlabelled target entropy loss is minimized and maximized in an alternative fashion, to reach the two objectives of class discrimination and domain invariance. COVID19-DANet is tested under four cross-dataset scenarios using the SARS-CoV-2-CT and COVID19-CT datasets and has achieved encouraging results compared to recent work in the literature.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.