ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.06864
28
12

Understanding Practices around Computational News Discovery Tools in the Domain of Science Journalism

12 November 2023
Sachita Nishal
J. Sinchai
Nicholas Diakopoulos
ArXivPDFHTML
Abstract

Science and technology journalists today face challenges in finding newsworthy leads due to increased workloads, reduced resources, and expanding scientific publishing ecosystems. Given this context, we explore computational methods to aid these journalists' news discovery in terms of time-efficiency and agency. In particular, we prototyped three computational information subsidies into an interactive tool that we used as a probe to better understand how such a tool may offer utility or more broadly shape the practices of professional science journalists. Our findings highlight central considerations around science journalists' agency, context, and responsibilities that such tools can influence and could account for in design. Based on this, we suggest design opportunities for greater and longer-term user agency; incorporating contextual, personal and collaborative notions of newsworthiness; and leveraging flexible interfaces and generative models. Overall, our findings contribute a richer view of the sociotechnical system around computational news discovery tools, and suggest ways to improve such tools to better support the practices of science journalists.

View on arXiv
Comments on this paper