ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.05956
29
9

ID Embedding as Subtle Features of Content and Structure for Multimodal Recommendation

10 November 2023
Yuting Liu
Enneng Yang
Yizhou Dang
Guibing Guo
Qiang Liu
Yuliang Liang
Linying Jiang
Xingwei Wang
ArXivPDFHTML
Abstract

Multimodal recommendation aims to model user and item representations comprehensively with the involvement of multimedia content for effective recommendations. Existing research has shown that it is beneficial for recommendation performance to combine (user- and item-) ID embeddings with multimodal salient features, indicating the value of IDs. However, there is a lack of a thorough analysis of the ID embeddings in terms of feature semantics in the literature. In this paper, we revisit the value of ID embeddings for multimodal recommendation and conduct a thorough study regarding its semantics, which we recognize as subtle features of \emph{content} and \emph{structure}. Based on our findings, we propose a novel recommendation model by incorporating ID embeddings to enhance the salient features of both content and structure. Specifically, we put forward a hierarchical attention mechanism to incorporate ID embeddings in modality fusing, coupled with contrastive learning, to enhance content representations. Meanwhile, we propose a lightweight graph convolution network for each modality to amalgamate neighborhood and ID embeddings for improving structural representations. Finally, the content and structure representations are combined to form the ultimate item embedding for recommendation. Extensive experiments on three real-world datasets (Baby, Sports, and Clothing) demonstrate the superiority of our method over state-of-the-art multimodal recommendation methods and the effectiveness of fine-grained ID embeddings. Our code is available at https://anonymous.4open.science/r/IDSF-code/.

View on arXiv
Comments on this paper