ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.05787
22
0

Towards stable real-world equation discovery with assessing differentiating quality influence

9 November 2023
Mikhail Masliaev
Ilya Markov
Alexander Hvatov
ArXivPDFHTML
Abstract

This paper explores the critical role of differentiation approaches for data-driven differential equation discovery. Accurate derivatives of the input data are essential for reliable algorithmic operation, particularly in real-world scenarios where measurement quality is inevitably compromised. We propose alternatives to the commonly used finite differences-based method, notorious for its instability in the presence of noise, which can exacerbate random errors in the data. Our analysis covers four distinct methods: Savitzky-Golay filtering, spectral differentiation, smoothing based on artificial neural networks, and the regularization of derivative variation. We evaluate these methods in terms of applicability to problems, similar to the real ones, and their ability to ensure the convergence of equation discovery algorithms, providing valuable insights for robust modeling of real-world processes.

View on arXiv
Comments on this paper