ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.03329
19
0

Complete collineations for maximum likelihood estimation

6 November 2023
Gergely Bérczi
Eloise Hamilton
Philipp Reichenbach
A. Seigal
ArXivPDFHTML
Abstract

We import the algebro-geometric notion of a complete collineation into the study of maximum likelihood estimation in directed Gaussian graphical models. A complete collineation produces a perturbation of sample data, which we call a stabilisation of the sample. While a maximum likelihood estimate (MLE) may not exist or be unique given sample data, it is always unique given a stabilisation. We relate the MLE given a stabilisation to the MLE given original sample data, when one exists, providing necessary and sufficient conditions for the MLE given a stabilisation to be one given the original sample. For linear regression models, we show that the MLE given any stabilisation is the minimal norm choice among the MLEs given an original sample. We show that the MLE has a well-defined limit as the stabilisation of a sample tends to the original sample, and that the limit is an MLE given the original sample, when one exists. Finally, we study which MLEs given a sample can arise as such limits. We reduce this to a question regarding the non-emptiness of certain algebraic varieties.

View on arXiv
Comments on this paper