ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.02891
37
1

AdaFlood: Adaptive Flood Regularization

6 November 2023
Wonho Bae
Yi Ren
Mohamad Osama Ahmed
Frederick Tung
Danica J. Sutherland
Gabriel L. Oliveira
    AI4CE
ArXivPDFHTML
Abstract

Although neural networks are conventionally optimized towards zero training loss, it has been recently learned that targeting a non-zero training loss threshold, referred to as a flood level, often enables better test time generalization. Current approaches, however, apply the same constant flood level to all training samples, which inherently assumes all the samples have the same difficulty. We present AdaFlood, a novel flood regularization method that adapts the flood level of each training sample according to the difficulty of the sample. Intuitively, since training samples are not equal in difficulty, the target training loss should be conditioned on the instance. Experiments on datasets covering four diverse input modalities - text, images, asynchronous event sequences, and tabular - demonstrate the versatility of AdaFlood across data domains and noise levels.

View on arXiv
Comments on this paper