ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.02119
15
0

Safe Sequential Optimization for Switching Environments

3 November 2023
Durgesh Kalwar
S. VineethB.
ArXivPDFHTML
Abstract

We consider the problem of designing a sequential decision making agent to maximize an unknown time-varying function which switches with time. At each step, the agent receives an observation of the function's value at a point decided by the agent. The observation could be corrupted by noise. The agent is also constrained to take safe decisions with high probability, i.e., the chosen points should have a function value greater than a threshold. For this switching environment, we propose a policy called Adaptive-SafeOpt and evaluate its performance via simulations. The policy incorporates Bayesian optimization and change point detection for the safe sequential optimization problem. We observe that a major challenge in adapting to the switching change is to identify safe decisions when the change point is detected and prevent attraction to local optima.

View on arXiv
Comments on this paper