ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.01598
20
2

CiFlow: Dataflow Analysis and Optimization of Key Switching for Homomorphic Encryption

2 November 2023
Negar Neda
Austin Ebel
Benedict Reynwar
Brandon Reagen
ArXivPDFHTML
Abstract

Homomorphic encryption (HE) is a privacy-preserving computation technique that enables computation on encrypted data. Today, the potential of HE remains largely unrealized as it is impractically slow, preventing it from being used in real applications. A major computational bottleneck in HE is the key-switching operation, accounting for approximately 70% of the overall HE execution time and involving a large amount of data for inputs, intermediates, and keys. Prior research has focused on hardware accelerators to improve HE performance, typically featuring large on-chip SRAMs and high off-chip bandwidth to deal with large scale data. In this paper, we present a novel approach to improve key-switching performance by rigorously analyzing its dataflow. Our primary goal is to optimize data reuse with limited on-chip memory to minimize off-chip data movement. We introduce three distinct dataflows: Max-Parallel (MP), Digit-Centric (DC), and Output-Centric (OC), each with unique scheduling approaches for key-switching computations. Through our analysis, we show how our proposed Output-Centric technique can effectively reuse data by significantly lowering the intermediate key-switching working set and alleviating the need for massive off-chip bandwidth. We thoroughly evaluate the three dataflows using the RPU, a recently published vector processor tailored for ring processing algorithms, which includes HE. This evaluation considers sweeps of bandwidth and computational throughput, and whether keys are buffered on-chip or streamed. With OC, we demonstrate up to 4.16x speedup over the MP dataflow and show how OC can save 12.25x on-chip SRAM by streaming keys for minimal performance penalty.

View on arXiv
Comments on this paper