ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.01357
27
9

Robust Identity Perceptual Watermark Against Deepfake Face Swapping

2 November 2023
Tianyi Wang
Mengxiao Huang
Harry Cheng
Bin Ma
Yinglong Wang
    AAML
ArXivPDFHTML
Abstract

Notwithstanding offering convenience and entertainment to society, Deepfake face swapping has caused critical privacy issues with the rapid development of deep generative models. Due to imperceptible artifacts in high-quality synthetic images, passive detection models against face swapping in recent years usually suffer performance damping regarding the generalizability issue. Therefore, several studies have been attempted to proactively protect the original images against malicious manipulations by inserting invisible signals in advance. However, the existing proactive defense approaches demonstrate unsatisfactory results with respect to visual quality, detection accuracy, and source tracing ability. In this study, to fulfill the research gap, we propose the first robust identity perceptual watermarking framework that concurrently performs detection and source tracing against Deepfake face swapping proactively. We assign identity semantics regarding the image contents to the watermarks and devise an unpredictable and nonreversible chaotic encryption system to ensure watermark confidentiality. The watermarks are encoded and recovered by jointly training an encoder-decoder framework along with adversarial image manipulations. Falsification and source tracing are accomplished by justifying the consistency between the content-matched identity perceptual watermark and the recovered robust watermark from the image. Extensive experiments demonstrate state-of-the-art detection performance on Deepfake face swapping under both cross-dataset and cross-manipulation settings.

View on arXiv
Comments on this paper