ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.20494
64
46

A Transformer-Based Model With Self-Distillation for Multimodal Emotion Recognition in Conversations

31 October 2023
Hui Ma
Jian Wang
Hongfei Lin
Bo Zhang
Yijia Zhang
Bo Xu
ArXiv (abs)PDFHTML
Abstract

Emotion recognition in conversations (ERC), the task of recognizing the emotion of each utterance in a conversation, is crucial for building empathetic machines. Existing studies focus mainly on capturing context- and speaker-sensitive dependencies on the textual modality but ignore the significance of multimodal information. Different from emotion recognition in textual conversations, capturing intra- and inter-modal interactions between utterances, learning weights between different modalities, and enhancing modal representations play important roles in multimodal ERC. In this paper, we propose a transformer-based model with self-distillation (SDT) for the task. The transformer-based model captures intra- and inter-modal interactions by utilizing intra- and inter-modal transformers, and learns weights between modalities dynamically by designing a hierarchical gated fusion strategy. Furthermore, to learn more expressive modal representations, we treat soft labels of the proposed model as extra training supervision. Specifically, we introduce self-distillation to transfer knowledge of hard and soft labels from the proposed model to each modality. Experiments on IEMOCAP and MELD datasets demonstrate that SDT outperforms previous state-of-the-art baselines.

View on arXiv
Comments on this paper