34
1

Self-Supervised Pre-Training for Precipitation Post-Processor

Abstract

Obtaining a sufficient forecast lead time for local precipitation is essential in preventing hazardous weather events. Global warming-induced climate change increases the challenge of accurately predicting severe precipitation events, such as heavy rainfall. In this paper, we propose a deep learning-based precipitation post-processor for numerical weather prediction (NWP) models. The precipitation post-processor consists of (i) employing self-supervised pre-training, where the parameters of the encoder are pre-trained on the reconstruction of the masked variables of the atmospheric physics domain; and (ii) conducting transfer learning on precipitation segmentation tasks (the target domain) from the pre-trained encoder. In addition, we introduced a heuristic labeling approach to effectively train class-imbalanced datasets. Our experiments on precipitation correction for regional NWP show that the proposed method outperforms other approaches.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.