ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.20077
30
0

Partial Tensorized Transformers for Natural Language Processing

30 October 2023
Subhadra Vadlamannati
Ryan Solgi
ArXivPDFHTML
Abstract

The transformer architecture has revolutionized Natural Language Processing (NLP) and other machine-learning tasks, due to its unprecedented accuracy. However, their extensive memory and parameter requirements often hinder their practical applications. In this work, we study the effect of tensor-train decomposition to improve the accuracy and compress transformer vision-language neural networks, namely BERT and ViT. We focus both on embedding-layer compression and partial tensorization of neural networks (PTNN) through an algorithmic approach. Our novel PTNN approach significantly improves the accuracy of existing models by up to 5%, all without the need for post-training adjustments, breaking new ground in the field of tensor decomposition.

View on arXiv
Comments on this paper