ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.18992
14
2

Bipartite Graph Pre-training for Unsupervised Extractive Summarization with Graph Convolutional Auto-Encoders

29 October 2023
Qianren Mao
Shaobo Zhao
Jiarui Li
Xiaolei Gu
Shizhu He
Bo Li
Jianxin Li
    SSL
ArXivPDFHTML
Abstract

Pre-trained sentence representations are crucial for identifying significant sentences in unsupervised document extractive summarization. However, the traditional two-step paradigm of pre-training and sentence-ranking, creates a gap due to differing optimization objectives. To address this issue, we argue that utilizing pre-trained embeddings derived from a process specifically designed to optimize cohensive and distinctive sentence representations helps rank significant sentences. To do so, we propose a novel graph pre-training auto-encoder to obtain sentence embeddings by explicitly modelling intra-sentential distinctive features and inter-sentential cohesive features through sentence-word bipartite graphs. These pre-trained sentence representations are then utilized in a graph-based ranking algorithm for unsupervised summarization. Our method produces predominant performance for unsupervised summarization frameworks by providing summary-worthy sentence representations. It surpasses heavy BERT- or RoBERTa-based sentence representations in downstream tasks.

View on arXiv
Comments on this paper