ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.18608
75
12
v1v2 (latest)

Embedding in Recommender Systems: A Survey

28 October 2023
Xiangyu Zhao
Maolin Wang
Xinjian Zhao
Jiansheng Li
Shucheng Zhou
Dawei Yin
Qing Li
Jiliang Tang
Ruocheng Guo
    AI4TS
ArXiv (abs)PDFHTML
Abstract

Recommender systems have become an essential component of many online platforms, providing personalized recommendations to users. A crucial aspect is embedding techniques that coverts the high-dimensional discrete features, such as user and item IDs, into low-dimensional continuous vectors and can enhance the recommendation performance. Applying embedding techniques captures complex entity relationships and has spurred substantial research. In this survey, we provide an overview of the recent literature on embedding techniques in recommender systems. This survey covers embedding methods like collaborative filtering, self-supervised learning, and graph-based techniques. Collaborative filtering generates embeddings capturing user-item preferences, excelling in sparse data. Self-supervised methods leverage contrastive or generative learning for various tasks. Graph-based techniques like node2vec exploit complex relationships in network-rich environments. Addressing the scalability challenges inherent to embedding methods, our survey delves into innovative directions within the field of recommendation systems. These directions aim to enhance performance and reduce computational complexity, paving the way for improved recommender systems. Among these innovative approaches, we will introduce Auto Machine Learning (AutoML), hash techniques, and quantization techniques in this survey. We discuss various architectures and techniques and highlight the challenges and future directions in these aspects. This survey aims to provide a comprehensive overview of the state-of-the-art in this rapidly evolving field and serve as a useful resource for researchers and practitioners working in the area of recommender systems.

View on arXiv
Comments on this paper