ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.18463
27
2

Benchingmaking Large Langage Models in Biomedical Triple Extraction

27 October 2023
Mingchen Li
Huixue Zhou
Rui Zhang
ArXivPDFHTML
Abstract

Biomedical triple extraction systems aim to automatically extract biomedical entities and relations between entities. The exploration of applying large language models (LLM) to triple extraction is still relatively unexplored. In this work, we mainly focus on sentence-level biomedical triple extraction. Furthermore, the absence of a high-quality biomedical triple extraction dataset impedes the progress in developing robust triple extraction systems. To address these challenges, initially, we compare the performance of various large language models. Additionally, we present GIT, an expert-annotated biomedical triple extraction dataset that covers a wider range of relation types.

View on arXiv
Comments on this paper