21
3

On the Identifiability and Interpretability of Gaussian Process Models

Abstract

In this paper, we critically examine the prevalent practice of using additive mixtures of Mat\érn kernels in single-output Gaussian process (GP) models and explore the properties of multiplicative mixtures of Mat\érn kernels for multi-output GP models. For the single-output case, we derive a series of theoretical results showing that the smoothness of a mixture of Mat\érn kernels is determined by the least smooth component and that a GP with such a kernel is effectively equivalent to the least smooth kernel component. Furthermore, we demonstrate that none of the mixing weights or parameters within individual kernel components are identifiable. We then turn our attention to multi-output GP models and analyze the identifiability of the covariance matrix AA in the multiplicative kernel K(x,y)=AK0(x,y)K(x,y) = AK_0(x,y), where K0K_0 is a standard single output kernel such as Mat\érn. We show that AA is identifiable up to a multiplicative constant, suggesting that multiplicative mixtures are well suited for multi-output tasks. Our findings are supported by extensive simulations and real applications for both single- and multi-output settings. This work provides insight into kernel selection and interpretation for GP models, emphasizing the importance of choosing appropriate kernel structures for different tasks.

View on arXiv
Comments on this paper