ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.12359
30
5

MARVEL: Multi-Agent Reinforcement-Learning for Large-Scale Variable Speed Limits

18 October 2023
Yuhang Zhang
Marcos Quiñones-Grueiro
Zhiyao Zhang
Yanbing Wang
William Barbour
Gautam Biswas
Dan Work
ArXivPDFHTML
Abstract

Variable Speed Limit (VSL) control acts as a promising highway traffic management strategy with worldwide deployment, which can enhance traffic safety by dynamically adjusting speed limits according to real-time traffic conditions. Most of the deployed VSL control algorithms so far are rule-based, lacking generalizability under varying and complex traffic scenarios. In this work, we propose MARVEL (Multi-Agent Reinforcement-learning for large-scale Variable spEed Limits), a novel framework for large-scale VSL control on highway corridors with real-world deployment settings. MARVEL utilizes only sensing information observable in the real world as state input and learns through a reward structure that incorporates adaptability to traffic conditions, safety, and mobility, thereby enabling multi-agent coordination. With parameter sharing among all VSL agents, the proposed framework scales to cover corridors with many agents. The policies are trained in a microscopic traffic simulation environment, focusing on a short freeway stretch with 8 VSL agents spanning 7 miles. For testing, these policies are applied to a more extensive network with 34 VSL agents spanning 17 miles of I-24 near Nashville, TN, USA. MARVEL-based method improves traffic safety by 63.4% compared to the no control scenario and enhances traffic mobility by 58.6% compared to a state-of-the-practice algorithm that has been deployed on I-24. Besides, we conduct an explainability analysis to examine the decision-making process of the agents and explore the learned policy under different traffic conditions. Finally, we test the response of the policy learned from the simulation-based experiments with real-world data collected from I-24 and illustrate its deployment capability.

View on arXiv
Comments on this paper