ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.11541
46
0

MUST&P-SRL: Multi-lingual and Unified Syllabification in Text and Phonetic Domains for Speech Representation Learning

17 October 2023
Noé Tits
ArXivPDFHTML
Abstract

In this paper, we present a methodology for linguistic feature extraction, focusing particularly on automatically syllabifying words in multiple languages, with a design to be compatible with a forced-alignment tool, the Montreal Forced Aligner (MFA). In both the textual and phonetic domains, our method focuses on the extraction of phonetic transcriptions from text, stress marks, and a unified automatic syllabification (in text and phonetic domains). The system was built with open-source components and resources. Through an ablation study, we demonstrate the efficacy of our approach in automatically syllabifying words from several languages (English, French and Spanish). Additionally, we apply the technique to the transcriptions of the CMU ARCTIC dataset, generating valuable annotations available online\footnote{\url{https://github.com/noetits/MUST_P-SRL}} that are ideal for speech representation learning, speech unit discovery, and disentanglement of speech factors in several speech-related fields.

View on arXiv
Comments on this paper