71
0
v1v2 (latest)

Deep Learning based Spatially Dependent Acoustical Properties Recovery

Abstract

The physics-informed neural network (PINN) is capable of recovering partial differential equation (PDE) coefficients that remain constant throughout the spatial domain directly from physical measurements. In this work, we propose a spatially dependent physics-informed neural network (SD-PINN), which enables the recovery of coefficients in spatially-dependent PDEs using a single neural network, eliminating the requirement for domain-specific physical expertise. We apply the SD-PINN to spatially-dependent wave equation coefficients recovery to reveal the spatial distribution of acoustical properties in the inhomogeneous medium. The proposed method exhibits robustness to noise owing to the incorporation of a loss function for the physical constraint that the assumed PDE must be satisfied. For the coefficients recovery of spatially two-dimensional PDEs, we store the PDE coefficients at all locations in the 2D region of interest into a matrix and incorporate the low-rank assumption for such a matrix to recover the coefficients at locations without available measurements.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.