ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.10374
14
1

Multi-Factor Spatio-Temporal Prediction based on Graph Decomposition Learning

16 October 2023
Jiahao Ji
Jingyuan Wang
Yu Mou
Cheng Long
    AI4TS
ArXivPDFHTML
Abstract

Spatio-temporal (ST) prediction is an important and widely used technique in data mining and analytics, especially for ST data in urban systems such as transportation data. In practice, the ST data generation is usually influenced by various latent factors tied to natural phenomena or human socioeconomic activities, impacting specific spatial areas selectively. However, existing ST prediction methods usually do not refine the impacts of different factors, but directly model the entangled impacts of multiple factors. This amplifies the modeling complexity of ST data and compromises model interpretability. To this end, we propose a multi-factor ST prediction task that predicts partial ST data evolution under different factors, and combines them for a final prediction. We make two contributions to this task: an effective theoretical solution and a portable instantiation framework. Specifically, we first propose a theoretical solution called decomposed prediction strategy and prove its effectiveness from the perspective of information entropy theory. On top of that, we instantiate a novel model-agnostic framework, named spatio-temporal graph decomposition learning (STGDL), for multi-factor ST prediction. The framework consists of two main components: an automatic graph decomposition module that decomposes the original graph structure inherent in ST data into subgraphs corresponding to different factors, and a decomposed learning network that learns the partial ST data on each subgraph separately and integrates them for the final prediction. We conduct extensive experiments on four real-world ST datasets of two types of graphs, i.e., grid graph and network graph. Results show that our framework significantly reduces prediction errors of various ST models by 9.41% on average (35.36% at most). Furthermore, a case study reveals the interpretability potential of our framework.

View on arXiv
Comments on this paper