ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.09767
22
1

VLIS: Unimodal Language Models Guide Multimodal Language Generation

15 October 2023
Jiwan Chung
Youngjae Yu
    VLM
ArXivPDFHTML
Abstract

Multimodal language generation, which leverages the synergy of language and vision, is a rapidly expanding field. However, existing vision-language models face challenges in tasks that require complex linguistic understanding. To address this issue, we introduce Visual-Language models as Importance Sampling weights (VLIS), a novel framework that combines the visual conditioning capability of vision-language models with the language understanding of unimodal text-only language models without further training. It extracts pointwise mutual information of each image and text from a visual-language model and uses the value as an importance sampling weight to adjust the token likelihood from a text-only model. VLIS improves vision-language models on diverse tasks, including commonsense understanding (WHOOPS, OK-VQA, and ScienceQA) and complex text generation (Concadia, Image Paragraph Captioning, and ROCStories). Our results suggest that VLIS represents a promising new direction for multimodal language generation.

View on arXiv
Comments on this paper