ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.09554
27
0

Neural network scoring for efficient computing

14 October 2023
Hugo Waltsburger
Erwan Libessart
Chengfang Ren
A. Kolar
R. Guinvarc’h
ArXiv (abs)PDFHTML
Abstract

Much work has been dedicated to estimating and optimizing workloads in high-performance computing (HPC) and deep learning. However, researchers have typically relied on few metrics to assess the efficiency of those techniques. Most notably, the accuracy, the loss of the prediction, and the computational time with regard to GPUs or/and CPUs characteristics. It is rare to see figures for power consumption, partly due to the difficulty of obtaining accurate power readings. In this paper, we introduce a composite score that aims to characterize the trade-off between accuracy and power consumption measured during the inference of neural networks. For this purpose, we present a new open-source tool allowing researchers to consider more metrics: granular power consumption, but also RAM/CPU/GPU utilization, as well as storage, and network input/output (I/O). To our best knowledge, it is the first fit test for neural architectures on hardware architectures. This is made possible thanks to reproducible power efficiency measurements. We applied this procedure to state-of-the-art neural network architectures on miscellaneous hardware. One of the main applications and novelties is the measurement of algorithmic power efficiency. The objective is to allow researchers to grasp their algorithms' efficiencies better. This methodology was developed to explore trade-offs between energy usage and accuracy in neural networks. It is also useful when fitting hardware for a specific task or to compare two architectures more accurately, with architecture exploration in mind.

View on arXiv
Comments on this paper