ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.09254
24
2

Entropic (Gromov) Wasserstein Flow Matching with GENOT

13 October 2023
Dominik Klein
Théo Uscidda
Fabian J. Theis
Marco Cuturi
    OT
ArXivPDFHTML
Abstract

Optimal transport (OT) theory has reshaped the field of generative modeling: Combined with neural networks, recent \textit{Neural OT} (N-OT) solvers use OT as an inductive bias, to focus on ``thrifty'' mappings that minimize average displacement costs. This core principle has fueled the successful application of N-OT solvers to high-stakes scientific challenges, notably single-cell genomics. N-OT solvers are, however, increasingly confronted with practical challenges: while most N-OT solvers can handle squared-Euclidean costs, they must be repurposed to handle more general costs; their reliance on deterministic Monge maps as well as mass conservation constraints can easily go awry in the presence of outliers; mapping points \textit{across} heterogeneous spaces is out of their reach. While each of these challenges has been explored independently, we propose a new framework that can handle, natively, all of these needs. The \textit{generative entropic neural OT} (GENOT) framework models the conditional distribution πε(\*y∣\*x)\pi_\varepsilon(\*y|\*x)πε​(\*y∣\*x) of an optimal \textit{entropic} coupling πε\pi_\varepsilonπε​, using conditional flow matching. GENOT is generative, and can transport points \textit{across} spaces, guided by sample-based, unbalanced solutions to the Gromov-Wasserstein problem, that can use any cost. We showcase our approach on both synthetic and single-cell datasets, using GENOT to model cell development, predict cellular responses, and translate between data modalities.

View on arXiv
Comments on this paper