ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.08840
39
8

Large Language Models as Source Planner for Personalized Knowledge-grounded Dialogue

13 October 2023
Hongru Wang
Minda Hu
Yang Deng
Rui Wang
Fei Mi
Weichao Wang
Yasheng Wang
Wai-Chung Kwan
Irwin King
Kam-Fai Wong
    RALM
ArXivPDFHTML
Abstract

Open-domain dialogue system usually requires different sources of knowledge to generate more informative and evidential responses. However, existing knowledge-grounded dialogue systems either focus on a single knowledge source or overlook the dependency between multiple sources of knowledge, which may result in generating inconsistent or even paradoxical responses. To incorporate multiple knowledge sources and dependencies between them, we propose SAFARI, a novel framework that leverages the exceptional capabilities of large language models (LLMs) in planning, understanding, and incorporating under both supervised and unsupervised settings. Specifically, SAFARI decouples the knowledge grounding into multiple sources and response generation, which allows easy extension to various knowledge sources including the possibility of not using any sources. To study the problem, we construct a personalized knowledge-grounded dialogue dataset \textit{\textbf{K}nowledge \textbf{B}ehind \textbf{P}ersona}~(\textbf{KBP}), which is the first to consider the dependency between persona and implicit knowledge. Experimental results on the KBP dataset demonstrate that the SAFARI framework can effectively produce persona-consistent and knowledge-enhanced responses.

View on arXiv
Comments on this paper