ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.08661
22
4

Counting and Algorithmic Generalization with Transformers

12 October 2023
Simon Ouellette
Rolf Pfister
Hansueli Jud
ArXivPDFHTML
Abstract

Algorithmic generalization in machine learning refers to the ability to learn the underlying algorithm that generates data in a way that generalizes out-of-distribution. This is generally considered a difficult task for most machine learning algorithms. Here, we analyze algorithmic generalization when counting is required, either implicitly or explicitly. We show that standard Transformers are based on architectural decisions that hinder out-of-distribution performance for such tasks. In particular, we discuss the consequences of using layer normalization and of normalizing the attention weights via softmax. With ablation of the problematic operations, we demonstrate that a modified transformer can exhibit a good algorithmic generalization performance on counting while using a very lightweight architecture.

View on arXiv
Comments on this paper