19
2

Characterizing climate pathways using feature importance on echo state networks

Abstract

The 2022 National Defense Strategy of the United States listed climate change as a serious threat to national security. Climate intervention methods, such as stratospheric aerosol injection, have been proposed as mitigation strategies, but the downstream effects of such actions on a complex climate system are not well understood. The development of algorithmic techniques for quantifying relationships between source and impact variables related to a climate event (i.e., a climate pathway) would help inform policy decisions. Data-driven deep learning models have become powerful tools for modeling highly nonlinear relationships and may provide a route to characterize climate variable relationships. In this paper, we explore the use of an echo state network (ESN) for characterizing climate pathways. ESNs are a computationally efficient neural network variation designed for temporal data, and recent work proposes ESNs as a useful tool for forecasting spatio-temporal climate data. Like other neural networks, ESNs are non-interpretable black-box models, which poses a hurdle for understanding variable relationships. We address this issue by developing feature importance methods for ESNs in the context of spatio-temporal data to quantify variable relationships captured by the model. We conduct a simulation study to assess and compare the feature importance techniques, and we demonstrate the approach on reanalysis climate data. In the climate application, we select a time period that includes the 1991 volcanic eruption of Mount Pinatubo. This event was a significant stratospheric aerosol injection, which we use as a proxy for an artificial stratospheric aerosol injection. Using the proposed approach, we are able to characterize relationships between pathway variables associated with this event.

View on arXiv
Comments on this paper