ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.08130
20
1

Fine-grained Conversational Decoding via Isotropic and Proximal Search

12 October 2023
Yuxuan Yao
Han Wu
Qiling Xu
Linqi Song
ArXivPDFHTML
Abstract

General-purpose text decoding approaches are usually adopted for dialogue response generation. Although the quality of the generated responses can be improved with dialogue-specific encoding methods, conversational decoding methods are still under-explored. Inspired by \citet{wu2023learning} that a good dialogue feature space should follow the rules of locality and isotropy, we present a fine-grained conversational decoding method, termed \textit{isotropic and proximal search (IPS)}. Our method is designed to generate the semantic-concentrated response, while still maintaining informativeness and discrimination against the context. Experiments show that our approach outperforms existing decoding strategies in the dialogue field across both automatic and human evaluation metrics. More in-depth analyses further confirm the effectiveness of our approach.

View on arXiv
Comments on this paper