ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.08100
18
0

Generative Intrinsic Optimization: Intrinsic Control with Model Learning

12 October 2023
Jianfei Ma
ArXivPDFHTML
Abstract

Future sequence represents the outcome after executing the action into the environment (i.e. the trajectory onwards). When driven by the information-theoretic concept of mutual information, it seeks maximally informative consequences. Explicit outcomes may vary across state, return, or trajectory serving different purposes such as credit assignment or imitation learning. However, the inherent nature of incorporating intrinsic motivation with reward maximization is often neglected. In this work, we propose a policy iteration scheme that seamlessly incorporates the mutual information, ensuring convergence to the optimal policy. Concurrently, a variational approach is introduced, which jointly learns the necessary quantity for estimating the mutual information and the dynamics model, providing a general framework for incorporating different forms of outcomes of interest. While we mainly focus on theoretical analysis, our approach opens the possibilities of leveraging intrinsic control with model learning to enhance sample efficiency and incorporate uncertainty of the environment into decision-making.

View on arXiv
Comments on this paper