ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.07698
25
2

SurroCBM: Concept Bottleneck Surrogate Models for Generative Post-hoc Explanation

11 October 2023
Bo Pan
Zhenke Liu
Yifei Zhang
Liang Zhao
ArXivPDFHTML
Abstract

Explainable AI seeks to bring light to the decision-making processes of black-box models. Traditional saliency-based methods, while highlighting influential data segments, often lack semantic understanding. Recent advancements, such as Concept Activation Vectors (CAVs) and Concept Bottleneck Models (CBMs), offer concept-based explanations but necessitate human-defined concepts. However, human-annotated concepts are expensive to attain. This paper introduces the Concept Bottleneck Surrogate Models (SurroCBM), a novel framework that aims to explain the black-box models with automatically discovered concepts. SurroCBM identifies shared and unique concepts across various black-box models and employs an explainable surrogate model for post-hoc explanations. An effective training strategy using self-generated data is proposed to enhance explanation quality continuously. Through extensive experiments, we demonstrate the efficacy of SurroCBM in concept discovery and explanation, underscoring its potential in advancing the field of explainable AI.

View on arXiv
Comments on this paper