ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.06989
13
1

TDPP: Two-Dimensional Permutation-Based Protection of Memristive Deep Neural Networks

10 October 2023
Minhui Zou
Zhenhua Zhu
Tzofnat Greenberg-Toledo
Orian Leitersdorf
Jiang Li
Junlong Zhou
Yu Wang
Nan Du
Shahar Kvatinsky
    AAML
ArXivPDFHTML
Abstract

The execution of deep neural network (DNN) algorithms suffers from significant bottlenecks due to the separation of the processing and memory units in traditional computer systems. Emerging memristive computing systems introduce an in situ approach that overcomes this bottleneck. The non-volatility of memristive devices, however, may expose the DNN weights stored in memristive crossbars to potential theft attacks. Therefore, this paper proposes a two-dimensional permutation-based protection (TDPP) method that thwarts such attacks. We first introduce the underlying concept that motivates the TDPP method: permuting both the rows and columns of the DNN weight matrices. This contrasts with previous methods, which focused solely on permuting a single dimension of the weight matrices, either the rows or columns. While it's possible for an adversary to access the matrix values, the original arrangement of rows and columns in the matrices remains concealed. As a result, the extracted DNN model from the accessed matrix values would fail to operate correctly. We consider two different memristive computing systems (designed for layer-by-layer and layer-parallel processing, respectively) and demonstrate the design of the TDPP method that could be embedded into the two systems. Finally, we present a security analysis. Our experiments demonstrate that TDPP can achieve comparable effectiveness to prior approaches, with a high level of security when appropriately parameterized. In addition, TDPP is more scalable than previous methods and results in reduced area and power overheads. The area and power are reduced by, respectively, 1218×\times× and 2815×\times× for the layer-by-layer system and by 178×\times× and 203×\times× for the layer-parallel system compared to prior works.

View on arXiv
Comments on this paper