ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.06760
22
1

Improved convergence rates for some kernel random forest algorithms

10 October 2023
I. Iakovidis
Nicola Arcozzi
ArXivPDFHTML
Abstract

Random forests are notable learning algorithms first introduced by Breinman in 2001, they are widely used for classification and regression tasks and their mathematical properties are under ongoing research. We consider a specific class of random forest algorithms related to kernel methods, the so-called KeRF (Kernel Random Forests.) In particular, we investigate thoroughly two explicit algorithms, designed independently of the data set, the centered KeRF and the uniform KeRF. In the present article, we provide an improvement in the rate of convergence for both algorithms and we explore the related reproducing kernel Hilbert space defined by the explicit kernel of the centered random forest.

View on arXiv
Comments on this paper