ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.06546
13
1

AutoCycle-VC: Towards Bottleneck-Independent Zero-Shot Cross-Lingual Voice Conversion

10 October 2023
Haeyun Choi
Jio Gim
Yuho Lee
Youngin Kim
Young-Joo Suh
    BDL
ArXivPDFHTML
Abstract

This paper proposes a simple and robust zero-shot voice conversion system with a cycle structure and mel-spectrogram pre-processing. Previous works suffer from information loss and poor synthesis quality due to their reliance on a carefully designed bottleneck structure. Moreover, models relying solely on self-reconstruction loss struggled with reproducing different speakers' voices. To address these issues, we suggested a cycle-consistency loss that considers conversion back and forth between target and source speakers. Additionally, stacked random-shuffled mel-spectrograms and a label smoothing method are utilized during speaker encoder training to extract a time-independent global speaker representation from speech, which is the key to a zero-shot conversion. Our model outperforms existing state-of-the-art results in both subjective and objective evaluations. Furthermore, it facilitates cross-lingual voice conversions and enhances the quality of synthesized speech.

View on arXiv
Comments on this paper