ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.06254
11
0

Get the gist? Using large language models for few-shot decontextualization

10 October 2023
Benjamin Kane
Lenhart Schubert
    BDL
ArXivPDFHTML
Abstract

In many NLP applications that involve interpreting sentences within a rich context -- for instance, information retrieval systems or dialogue systems -- it is desirable to be able to preserve the sentence in a form that can be readily understood without context, for later reuse -- a process known as ``decontextualization''. While previous work demonstrated that generative Seq2Seq models could effectively perform decontextualization after being fine-tuned on a specific dataset, this approach requires expensive human annotations and may not transfer to other domains. We propose a few-shot method of decontextualization using a large language model, and present preliminary results showing that this method achieves viable performance on multiple domains using only a small set of examples.

View on arXiv
Comments on this paper