ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.05873
76
14
v1v2v3v4v5 (latest)

Geom-Erasing: Geometry-Driven Removal of Implicit Concept in Diffusion Models

9 October 2023
Zhili Liu
Kai Chen
Yifan Zhang
Jianhua Han
Lanqing Hong
Hang Xu
Zhenguo Li
Dit-Yan Yeung
James T. Kwok
ArXiv (abs)PDFHTML
Abstract

Fine-tuning diffusion models through personalized datasets is an acknowledged method for improving generation quality across downstream tasks, which, however, often inadvertently generates unintended concepts such as watermarks and QR codes, attributed to the limitations in image sources and collecting methods within specific downstream tasks. Existing solutions suffer from eliminating these unintentionally learned implicit concepts, primarily due to the dependency on the model's ability to recognize concepts that it actually cannot discern. In this work, we introduce \methodname, a novel approach that successfully removes the implicit concepts with either an additional accessible classifier or detector model to encode geometric information of these concepts into text domain. Moreover, we propose \textit{Implicit Concept}, a novel image-text dataset imbued with three implicit concepts (\ie, watermarks, QR codes, and text) for training and evaluation. Experimental results demonstrate that \methodname not only identifies but also proficiently eradicates implicit concepts, revealing a significant improvement over the existing methods. The integration of geometric information marks a substantial progression in the precise removal of implicit concepts in diffusion models.

View on arXiv
Comments on this paper