ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.05690
21
9

Abstractive Summarization of Large Document Collections Using GPT

9 October 2023
Sengjie Liu
Christopher G. Healey
ArXivPDFHTML
Abstract

This paper proposes a method of abstractive summarization designed to scale to document collections instead of individual documents. Our approach applies a combination of semantic clustering, document size reduction within topic clusters, semantic chunking of a cluster's documents, GPT-based summarization and concatenation, and a combined sentiment and text visualization of each topic to support exploratory data analysis. Statistical comparison of our results to existing state-of-the-art systems BART, BRIO, PEGASUS, and MoCa using ROGUE summary scores showed statistically equivalent performance with BART and PEGASUS on the CNN/Daily Mail test dataset, and with BART on the Gigaword test dataset. This finding is promising since we view document collection summarization as more challenging than individual document summarization. We conclude with a discussion of how issues of scale are

View on arXiv
Comments on this paper