ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.03205
19
3

A Large-Scale 3D Face Mesh Video Dataset via Neural Re-parameterized Optimization

4 October 2023
Youwang Kim
Lee Hyun
Kim Sung-Bin
Suekyeong Nam
Janghoon Ju
Tae-Hyun Oh
    CVBM
    3DH
ArXivPDFHTML
Abstract

We propose NeuFace, a 3D face mesh pseudo annotation method on videos via neural re-parameterized optimization. Despite the huge progress in 3D face reconstruction methods, generating reliable 3D face labels for in-the-wild dynamic videos remains challenging. Using NeuFace optimization, we annotate the per-view/-frame accurate and consistent face meshes on large-scale face videos, called the NeuFace-dataset. We investigate how neural re-parameterization helps to reconstruct image-aligned facial details on 3D meshes via gradient analysis. By exploiting the naturalness and diversity of 3D faces in our dataset, we demonstrate the usefulness of our dataset for 3D face-related tasks: improving the reconstruction accuracy of an existing 3D face reconstruction model and learning 3D facial motion prior. Code and datasets will be available at https://neuface-dataset.github.io.

View on arXiv
Comments on this paper