ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.02784
45
9

MAD Max Beyond Single-Node: Enabling Large Machine Learning Model Acceleration on Distributed Systems

4 October 2023
Samuel Hsia
Alicia Golden
Bilge Acun
Newsha Ardalani
Zach DeVito
Gu-Yeon Wei
David Brooks
Carole-Jean Wu
    MoE
ArXivPDFHTML
Abstract

Training and deploying large-scale machine learning models is time-consuming, requires significant distributed computing infrastructures, and incurs high operational costs. Our analysis, grounded in real-world large model training on datacenter-scale infrastructures, reveals that 14~32% of all GPU hours are spent on communication with no overlapping computation. To minimize this outstanding communication latency and other inherent at-scale inefficiencies, we introduce an agile performance modeling framework, MAD-Max. This framework is designed to optimize parallelization strategies and facilitate hardware-software co-design opportunities. Through the application of MAD-Max to a suite of real-world large-scale ML models on state-of-the-art GPU clusters, we showcase potential throughput enhancements of up to 2.24x for pre-training and up to 5.2x for inference scenarios, respectively.

View on arXiv
Comments on this paper