ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.01943
8
0

Ravestate: Distributed Composition of a Causal-Specificity-Guided Interaction Policy

3 October 2023
Joseph Birkner
Andreas Dolp
Negin Karimi
Nikita Basargin
Alona Kharchenko
Rafael Hostettler
ArXivPDFHTML
Abstract

In human-robot interaction policy design, a rule-based method is efficient, explainable, expressive and intuitive. In this paper, we present the Signal-Rule-Slot framework, which refines prior work on rule-based symbol system design and introduces a new, Bayesian notion of interaction rule utility called Causal Pathway Self-information. We offer a rigorous theoretical foundation as well as a rich open-source reference implementation Ravestate, with which we conduct user studies in text-, speech-, and vision-based scenarios. The experiments show robust contextual behaviour of our probabilistically informed rule-based system, paving the way for more effective human-machine interaction.

View on arXiv
Comments on this paper