ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.01452
15
0

Fooling the Textual Fooler via Randomizing Latent Representations

2 October 2023
Duy C. Hoang
Quang H. Nguyen
Saurav Manchanda
MinLong Peng
Kok-Seng Wong
Khoa D. Doan
    SILM
    AAML
ArXivPDFHTML
Abstract

Despite outstanding performance in a variety of NLP tasks, recent studies have revealed that NLP models are vulnerable to adversarial attacks that slightly perturb the input to cause the models to misbehave. Among these attacks, adversarial word-level perturbations are well-studied and effective attack strategies. Since these attacks work in black-box settings, they do not require access to the model architecture or model parameters and thus can be detrimental to existing NLP applications. To perform an attack, the adversary queries the victim model many times to determine the most important words in an input text and to replace these words with their corresponding synonyms. In this work, we propose a lightweight and attack-agnostic defense whose main goal is to perplex the process of generating an adversarial example in these query-based black-box attacks; that is to fool the textual fooler. This defense, named AdvFooler, works by randomizing the latent representation of the input at inference time. Different from existing defenses, AdvFooler does not necessitate additional computational overhead during training nor relies on assumptions about the potential adversarial perturbation set while having a negligible impact on the model's accuracy. Our theoretical and empirical analyses highlight the significance of robustness resulting from confusing the adversary via randomizing the latent space, as well as the impact of randomization on clean accuracy. Finally, we empirically demonstrate near state-of-the-art robustness of AdvFooler against representative adversarial word-level attacks on two benchmark datasets.

View on arXiv
Comments on this paper