80
0
v1v2 (latest)

Network Preference Dynamics using Lattice Theory

Abstract

Preferences, fundamental in all forms of strategic behavior and collective decision-making, in their raw form, are an abstract ordering on a set of alternatives. Agents, we assume, revise their preferences as they gain more information about other agents. Exploiting the ordered algebraic structure of preferences, we introduce a message-passing algorithm for heterogeneous agents distributed over a network to update their preferences based on aggregations of the preferences of their neighbors in a graph. We demonstrate the existence of equilibrium points of the resulting global dynamical system of local preference updates and provide a sufficient condition for trajectories to converge to equilibria: stable preferences. Finally, we present numerical simulations demonstrating our preliminary results.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.