ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.17384
22
18

Toward Universal Speech Enhancement for Diverse Input Conditions

29 September 2023
Wangyou Zhang
Kohei Saijo
Zhong-Qiu Wang
Shinji Watanabe
Yanmin Qian
    VLM
ArXivPDFHTML
Abstract

The past decade has witnessed substantial growth of data-driven speech enhancement (SE) techniques thanks to deep learning. While existing approaches have shown impressive performance in some common datasets, most of them are designed only for a single condition (e.g., single-channel, multi-channel, or a fixed sampling frequency) or only consider a single task (e.g., denoising or dereverberation). Currently, there is no universal SE approach that can effectively handle diverse input conditions with a single model. In this paper, we make the first attempt to investigate this line of research. First, we devise a single SE model that is independent of microphone channels, signal lengths, and sampling frequencies. Second, we design a universal SE benchmark by combining existing public corpora with multiple conditions. Our experiments on a wide range of datasets show that the proposed single model can successfully handle diverse conditions with strong performance.

View on arXiv
Comments on this paper