ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.17265
11
0

Effect of structure-based training on 3D localization precision and quality

29 September 2023
Alexandra Antonova
Craig Snoeyink
ArXivPDFHTML
Abstract

This study introduces a structural-based training approach for CNN-based algorithms in single-molecule localization microscopy (SMLM) and 3D object reconstruction. We compare this approach with the traditional random-based training method, utilizing the LUENN package as our AI pipeline. The quantitative evaluation demonstrates significant improvements in detection rate and localization precision with the structural-based training approach, particularly in varying signal-to-noise ratios (SNRs). Moreover, the method effectively removes checkerboard artifacts, ensuring more accurate 3D reconstructions. Our findings highlight the potential of the structural-based training approach to advance super-resolution microscopy and deepen our understanding of complex biological systems at the nanoscale.

View on arXiv
Comments on this paper